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Lithium late transition-metal nitrides, originally described as
Liz—xMN (M = Cu, Ni, Co), are isostructural with N and exhibit
hexagonal layered structures with alternating,liJi and Li/M
planest The introduction of a transition metal has important
implications for the electronic, conduction, and magnetic properties.
Recently, LiN-derived ternary nitrides have aroused interest as
possible anode materials in lithium secondary battérigslowever,
at the microscopic level, the electrochemistry and dynamics in
lithium nitridometalates are poorly understood.

Our recent structural investigations of the-INi—N system
reveal ordered and disordered phases with significant levels of Figure 1. Structure of LiNiN (space grou6m2), with the unit cell
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with the highest LT conductivity observed in a crystalline solid
electrolyte at ambient temperat#¥.The formation of additional . ® J\M
vacancies in the ternary phases implies a potential for enhanced w63 K
lithium ion diffusion.

Disordered phases 4.ix_,NiyN are formed forx = 0—0.8811.12 N o 323K
Their structures are defect IN-type where the transition metal
partially and aliovalently replaces interlayer lithium, Li(1). Ensuing
lithium vacancies are randomly distributed within {LjN] planes.
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is completely replaced, and vacancies are ordered within the N 203K
[Li>—yN] planes’ Vacancy ordering is concomitant with a structure _JAJ\HL

transition (fromP6/mmmin LisN to P6m2 in LiNiN or P62m in JJ\\/\\L‘ 163 K
LisNisNg). Disordered phases can be obtained by heating stoichio- 123K

metric mixtures of LN and Ni powders. The preparation of 4000 | 2000 0  -2000  -4000 4000 200
ordered phases requires carefully controlled conditiéns. e P

. i i . : : g Figure 2. 7Li NMR spectra of (a) LiN and (b) LiNiN recorded as a
Sln_gle crystal X-ray _dlffractlon stu_dles_ sugge§t that LiNiN has function of temperature as described in the text.
the highest concentration of vacancies in the-Ni—N system’
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Within LiNiN, alternate [LINF~ planes and Ni" ions stack (@ 0
perpendicular to the-axis™14 (Figure 1). The [LiN] planes are ° LRI B P
linked via infinite, perpendicular NNi—N chains, L[NiN ). ) ol N

Nitrogen is five-coordinate (to three Li and two Ni), thus forming
trigonal bipyramids linked by vertexes in three dimensions. The
lithium coordination in the [LiN] planes is trigonal planar, as in

linewidth / Hz
o ©
°
o
°
1
T, ()
3 3
7

the parent compound . In this communication, we describe ¢ TS " \z\ RN
studies of the local structure and dynamics usibigsolid-state "0y, . el
NMR and of magnetic properties by SQUID magnetometry. M 1 5 ST

7L| NMR Spectra (Flgure 2) Were recorded between 120 and 473 0.002 0.003 10;1(-)?:4;),005 0.006 0.007 0.008 0.001 0.002 0,00\3 0‘10/;.4«(,);;)05 0.006 0.007 0.008
K usmg DOWde.r samples of LININ a'_‘d the parentNiat 77.7 Figure 3. (a)7Li NMR line widths and (b)T; relaxation times recorded as
MHz with a variable-temperature static NMR proielhe parent described in the text for BN (Li(2) satellites,O) and LiNiN (central
LisN shows motional narrowing between 180 and 290 K, which transition,0).
was ascribed previousto the onset of Li intralayer diffusion.
Above 290 K, the LiN satellites broaden again, due to™Li
interlayer diffusion via exchange between Li(1) and Li(2) sifes.
For LiNiN, the spectra vary with temperature in a fashion similar

to the “universal” behavior observed previouslfor LISICON and

phosphate lithium superionic conductors. At low temperatures, the
quadrupolar satellites are broadened and lost in the baseline. Above
200 K, motional narrowing occurs (Figure 3@) due to Li*
diffusion, while at 280 K, well-resolved satellites with a reduced
quadrupolar coupling constant begin to appear. This indicates that
t University of Nottingham. the Li* diffusion occurs only within the [LiN] planes in LiNiN. A

* De Montfort University. straightforward measurement of the central transition dipolar line
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Table 1. Li* Intralayer Diffusion Parameters from NMR Data

LisN LiNiN
line width T line width T,
EJ/eV 0.121 0.122 0.068 0.066
7(298 K)/(10°7s) 2.77 2.83 35.2 32.2
D(298 K)/(10°1*m2s71) 9.02 8.84 0.638 0.697

width (Figure 3a,0) is possible in LiNiN where only the Li(2)
site is present. Hence, following the analysis in ref 16, the mean
Lit* jump rate (1¢), the diffusion coefficientD), and the activation
energy E) for LiT intralayer diffusion in LiNiN were obtained.
These are given in Table 1, along with the corresponding quantities
for LisN, which are comparable with those given in ref 16. As in
previous worki® the overlap of the central transitions for the Li(1)
and Li(2) sites in LiN necessitates the measurement of the Li(2)
satellite line widths. From Table 1, tHe, for LiNiN is reduced
compared to LgN, and 1# andD at 298 K are lower. The reduction

in the Li™ jump rate may arise from the entropic effects of vacancy
ordering in LiNiN. However, despite the structural differences
between LiN and LiNiN, the Li* intralayer diffusion is very similar.

“Li spin—lattice relaxation timeT;) measurements on 4N and
LiNiN confirmed the conclusions of the line width studies. For
LisN, 819 there are two relaxation regimes due to interlayer and
intralayer diffusion at high and low temperatures, respectively
(Figure 3b,0). At 77.7 MHz, the T; minimum for the high

temperature relaxation process occurs above the maximum tem-

perature of 473 K available with our apparatus. For LiNiN, only a
single relaxation regime is observed (Figure BI), confirming
that diffusion is limited to one of the two mechanisms present in
LisN. A simple BPP analyst8yields diffusion parameters for ti
intralayer diffusion (Table 1), which are in good agreement with
those obtained from the line width measurements. Withouithe
minimum, a more detailed analy’id®was not attempted.
Magnetic susceptibility measuremeiitshow that LiN exhibits

very weak temperature-independent paramagnetism in the range

5—250 K. In the same temperature range, the magnetic susceptibility
of LiNiN is higher, but of the same order of magnitude and almost
independent of temperature. This type of magnetic behavior is
characteristic of itinerant spin systems and suggests that LiNiN
could be metallié! This premise is not unreasonable given the
structure and the band structure of the semiconducting parent,
LizN.22 Although the origin of the metallic properties of LiNiN is
not yet known, the straighffNiN ;7] chains in the structure could

be expected to lead to low-dimensional electronic and magnetic
behavior. The small CurieWeiss contribution to the magnetism

in LININ probably arises from local defects in thNiN )]
chains where Li atoms occupy interplanar (Ni) sites. Similar
magnetism is observed in metallic CaNiN, also containing straight
L[NiN 2] chains®

The7Li shift (30 ppm relative @ 1 M LiCl (aq)) in LiNiN?* is
almost independent of temperature, indicative of Pauli paramagnet-
ism 25 In contrast, larger (up to 2000 ppm) temperature-dependent
6Li and 7Li NMR shifts are observed in EEMn—0O spinels where
the NMR behavior is dominated by Cufi&Veiss paramagnetisf.

In conclusion, we have demonstrated that layered LiNiN exhibits
significant Li™ diffusion, likely combined with electronic conduc-
tivity. “Li NMR relaxation measurements suggest thatdiffusion
takes place via an intralayer process ofilyin the ternary material

is reduced, commensurate with a weakening (lengthening) of the
Li—N intralayer bond. These properties make LiNiN attractive for
further experimental and theoretical investigation and a strong
candidate as an anode material. We are currently examining the
transport, electrochemical, and magnetic properties of LiNiN in
more detail.
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